Some Selected Picks from Extremal Combinatorics

Sam Spiro, UC San Diego.

What is Extremal Combinatorics?

What is Extremal Combinatorics?

Roughly speaking, problems in extremal combinatorics ask how large a "parameter" of a "combinatorial object" can be.

What is Extremal Combinatorics?

Roughly speaking, problems in extremal combinatorics ask how large a "parameter" of a "combinatorial object" can be.

For example, a central problem of Ramsey Theory is to determine how large a clique K_{N} one can have before every two-coloring of its edges contains a monochromatic clique of size t.

What is Extremal Combinatorics?

Roughly speaking, problems in extremal combinatorics ask how large a "parameter" of a "combinatorial object" can be.

For example, a central problem of Ramsey Theory is to determine how large a clique K_{N} one can have before every two-coloring of its edges contains a monochromatic clique of size t. I.e., it seeks to determine how many "vertices" a "two-colored cliques K_{N} without a monochromatic clique of size t " can have.

What is Extremal Combinatorics?

Often it is too much to ask for an exact answer to our problem, so we instead try and get effective bounds.

What is Extremal Combinatorics?

Often it is too much to ask for an exact answer to our problem, so we instead try and get effective bounds. Because of this we use lots of tools from analysis in order to obtain our bounds.

What is Extremal Combinatorics?

Often it is too much to ask for an exact answer to our problem, so we instead try and get effective bounds. Because of this we use lots of tools from analysis in order to obtain our bounds. These include:

- Cauchy-Schwarz:

$$
\left(\sum x_{i} y_{i}\right)^{2} \leq \sum x_{i}^{2} \cdot \sum y_{i}^{2}
$$

What is Extremal Combinatorics?

Often it is too much to ask for an exact answer to our problem, so we instead try and get effective bounds. Because of this we use lots of tools from analysis in order to obtain our bounds. These include:

- Cauchy-Schwarz:

$$
\left(\sum x_{i} y_{i}\right)^{2} \leq \sum x_{i}^{2} \cdot \sum y_{i}^{2}
$$

- AMGM:

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq n^{-1} \sum_{i=1}^{n} x_{i}=\mathbb{E}\left[x_{i}\right]
$$

What is Extremal Combinatorics?

Often it is too much to ask for an exact answer to our problem, so we instead try and get effective bounds. Because of this we use lots of tools from analysis in order to obtain our bounds. These include:

- Cauchy-Schwarz:

$$
\left(\sum x_{i} y_{i}\right)^{2} \leq \sum x_{i}^{2} \cdot \sum y_{i}^{2}
$$

- AMGM:

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq n^{-1} \sum_{i=1}^{n} x_{i}=\mathbb{E}\left[x_{i}\right]
$$

- Splitting things into dyadic intervals (e.g. considering all vertices of a graph with degree between 2^{k-1} and 2^{k}).

What is Extremal Combinatorics?

Often it is too much to ask for an exact answer to our problem, so we instead try and get effective bounds. Because of this we use lots of tools from analysis in order to obtain our bounds. These include:

- Cauchy-Schwarz:

$$
\left(\sum x_{i} y_{i}\right)^{2} \leq \sum x_{i}^{2} \cdot \sum y_{i}^{2}
$$

- AMGM:

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq n^{-1} \sum_{i=1}^{n} x_{i}=\mathbb{E}\left[x_{i}\right]
$$

- Splitting things into dyadic intervals (e.g. considering all vertices of a graph with degree between 2^{k-1} and 2^{k}).

Extremal Graph Theory

If F, G are graphs, we say that G is F-free if it contains no copy of F as a subgraph.

Extremal Graph Theory

If F, G are graphs, we say that G is F-free if it contains no copy of F as a subgraph. For example, if $K_{s, t}$ is the complete bipartite graph (with parts of size s and t) and K_{3} a triangle, then $K_{s, t}$ is K_{3}-free.

Extremal Graph Theory

If F, G are graphs, we say that G is F-free if it contains no copy of F as a subgraph. For example, if $K_{s, t}$ is the complete bipartite graph (with parts of size s and t) and K_{3} a triangle, then $K_{s, t}$ is K_{3}-free.

Question

How many "edges" can an " n-vertex F-free graph" have?

Extremal Graph Theory

If F, G are graphs, we say that G is F-free if it contains no copy of F as a subgraph. For example, if $K_{s, t}$ is the complete bipartite graph (with parts of size s and t) and K_{3} a triangle, then $K_{s, t}$ is K_{3}-free.

Question

How many "edges" can an " n-vertex F-free graph" have?
We denote this quantity by ex (n, F), which is called the extremal number or Turán number of F.

Extremal Graph Theory

ex $(n, F)=$ maximum number of edges in an n-vertex F-free graph.

Extremal Graph Theory

$\operatorname{ex}(n, F)=$ maximum number of edges in an n-vertex F-free graph.
For example, ex $\left(n, K_{3}\right) \geq\left\lfloor n^{2} / 4\right\rfloor$ because $G=K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$ is an n-vertex graph which is K_{3}-free and with $\left\lfloor n^{2} / 4\right\rfloor$ edges.

Extremal Graph Theory

$\operatorname{ex}(n, F)=$ maximum number of edges in an n-vertex F-free graph.
For example, ex $\left(n, K_{3}\right) \geq\left\lfloor n^{2} / 4\right\rfloor$ because $G=K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$ is an n-vertex graph which is K_{3}-free and with $\left\lfloor n^{2} / 4\right\rfloor$ edges.
Theorem (Mantel, 1907)

$$
\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor
$$

and the unique construction is $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$.

Extremal Graph Theory

Let K_{t} denote the t-vertex clique, i.e. the graph where every two edges are adjacent to each other.

Extremal Graph Theory

Let K_{t} denote the t-vertex clique, i.e. the graph where every two edges are adjacent to each other.

Theorem (Turán, 1941)

$$
\operatorname{ex}\left(n, K_{t}\right)=\left\lfloor\left(1-\frac{1}{t-1}\right) \frac{n^{2}}{2}\right\rfloor
$$

and the unique construction is a complete $(t-1)$-partite graph with parts of sizes $\lfloor n /(t-1)\rfloor,\lceil n /(t-1)\rceil$.

Extremal Graph Theory

Turán's Theorem can be generalized considerably.

Extremal Graph Theory

Turán's Theorem can be generalized considerably. Recall that $\chi(G)$ is the chromatic number of G, i.e. the fewest number of colors needed to properly color the vertices of G (meaning that every pair of adjacent vertices receives a distinct color).

Extremal Graph Theory

Turán's Theorem can be generalized considerably. Recall that $\chi(G)$ is the chromatic number of G, i.e. the fewest number of colors needed to properly color the vertices of G (meaning that every pair of adjacent vertices receives a distinct color).
For example, the following shows that the Petersen graph G has $\chi(G) \leq 3$, and it is not hard to show that it is in fact equal to 3 .

Picture form Wikipedia.

Extremal Graph Theory

Theorem (Erdős-Stone, 1946)

For any graph F,

$$
\operatorname{ex}(n, F)=\left(1-\frac{1}{\chi(F)-1}\right) \frac{n^{2}}{2}+o\left(n^{2}\right)
$$

Extremal Graph Theory

Theorem (Erdős-Stone, 1946)

For any graph F,

$$
\operatorname{ex}(n, F)=\left(1-\frac{1}{\chi(F)-1}\right) \frac{n^{2}}{2}+o\left(n^{2}\right)
$$

For example, this tells us that the extremal number of the Petersen graph is roughly $\frac{1}{2}\binom{n}{2}$.

Extremal Graph Theory

Theorem (Erdős-Stone, 1946)

For any graph F,

$$
\operatorname{ex}(n, F)=\left(1-\frac{1}{\chi(F)-1}\right) \frac{n^{2}}{2}+o\left(n^{2}\right)
$$

For example, this tells us that the extremal number of the Petersen graph is roughly $\frac{1}{2}\binom{n}{2}$. The lower bound for Erdős-Stone is easy: just take a complete $(\chi(F)-1)$-partite graph. The upper bound is significantly harder.

Extremal Graph Theory

Theorem (Erdős-Stone, 1946)

For any graph F,

$$
\operatorname{ex}(n, F)=\left(1-\frac{1}{\chi(F)-1}\right) \frac{n^{2}}{2}+o\left(n^{2}\right)
$$

For example, this tells us that the extremal number of the Petersen graph is roughly $\frac{1}{2}\binom{n}{2}$. The lower bound for Erdős-Stone is easy: just take a complete $(\chi(F)-1)$-partite graph. The upper bound is significantly harder.

Note that when $\chi(F)=2$, this only gives

$$
\operatorname{ex}(n, F)=o\left(n^{2}\right)
$$

Extremal Graph Theory

In general determining ex (n, F) when F is bipartite (i.e. $\chi(F)=2$) is very, very difficult, even for simple families of graphs.

Extremal Graph Theory

In general determining ex (n, F) when F is bipartite (i.e. $\chi(F)=2$) is very, very difficult, even for simple families of graphs.

Theorem

If F is a tree on k vertices, then

$$
\operatorname{ex}(n, F) \leq(k-1) n
$$

Extremal Graph Theory

In general determining ex (n, F) when F is bipartite (i.e. $\chi(F)=2$) is very, very difficult, even for simple families of graphs.

Theorem

If F is a tree on k vertices, then

$$
\operatorname{ex}(n, F) \leq(k-1) n
$$

Conjecture (Erdős-Sós, 1962)
If F is a tree on k vertices, then

$$
\operatorname{ex}(n, F) \leq \frac{1}{2}(k-1) n .
$$

Extremal Graph Theory

Theorem (Kovari-Sós-Turán, 1954)
If $s \leq t$, then

$$
\operatorname{ex}\left(n, K_{s, t}\right) \ll n^{2-1 / s} .
$$

Extremal Graph Theory

Theorem (Kovari-Sós-Turán, 1954)
If $s \leq t$, then

$$
\operatorname{ex}\left(n, K_{s, t}\right) \ll n^{2-1 / s} .
$$

Conjecture

If $s \leq t$, then

$$
\operatorname{ex}\left(n, K_{s, t}\right) \approx n^{2-1 / s}
$$

Extremal Graph Theory

Theorem (Kovari-Sós-Turán, 1954)
If $s \leq t$, then

$$
\operatorname{ex}\left(n, K_{s, t}\right) \ll n^{2-1 / s} .
$$

Conjecture

If $s \leq t$, then

$$
\operatorname{ex}\left(n, K_{s, t}\right) \approx n^{2-1 / s}
$$

This is known to hold whenever $t>(s-1)$! due to the existence of projective norm graphs.

Extremal Graph Theory

Theorem (Erdős; Bondy-Simonovits, 1974)
$\mathrm{ex}\left(n, C_{2 k}\right) \ll n^{1+1 / k}$.

Extremal Graph Theory

Theorem (Erdős; Bondy-Simonovits, 1974)

$$
\operatorname{ex}\left(n, C_{2 k}\right) \ll n^{1+1 / k}
$$

Conjecture

$$
\operatorname{ex}\left(n, C_{2 k}\right) \approx n^{1+1 / k}
$$

Extremal Graph Theory

Theorem (Erdős; Bondy-Simonovits, 1974)
 $\mathrm{ex}\left(n, C_{2 k}\right) \ll n^{1+1 / k}$.

Conjecture

$\operatorname{ex}\left(n, C_{2 k}\right) \approx n^{1+1 / k}$.
This is known to hold when $k=2,3,5$ (but not $4!$) due to the existence of generalized polygons.

Extremal Graph Theory

Theorem (Erdős; Bondy-Simonovits, 1974)
 $\mathrm{ex}\left(n, C_{2 k}\right) \ll n^{1+1 / k}$.

Conjecture

$\operatorname{ex}\left(n, C_{2 k}\right) \approx n^{1+1 / k}$.
This is known to hold when $k=2,3,5$ (but not $4!$) due to the existence of generalized polygons.

In general, it is often the case that a conjectured upper bound is relatively easy to obtain, but seemingly the lower bound requires tools from algebra, geometry, number theory, etc.

Hypergraphs

There are many ways to generalize graphs (directed graphs, multigraphs), and each of these have their own sort of extremal problems one can ask.

Hypergraphs

There are many ways to generalize graphs (directed graphs, multigraphs), and each of these have their own sort of extremal problems one can ask. An important generalization is hypergraphs.

Hypergraphs

There are many ways to generalize graphs (directed graphs, multigraphs), and each of these have their own sort of extremal problems one can ask. An important generalization is hypergraphs. A hypergraph H is a pair (V, E) where V is the vertex set and E is a collection of $e \subseteq V$ called edges.

Hypergraphs

There are many ways to generalize graphs (directed graphs, multigraphs), and each of these have their own sort of extremal problems one can ask. An important generalization is hypergraphs. A hypergraph H is a pair (V, E) where V is the vertex set and E is a collection of $e \subseteq V$ called edges.

When each $e \in E$ has r vertices we say that H is an r-uniform hypergraph.

Hypergraphs

If F is an r-uniform hypergrpah, define ex (n, F) to be the maximum number of edges an n-vertex r-uniform hypergraph H can have without containing F as a subgraph.

Hypergraphs

If F is an r-uniform hypergrpah, define ex (n, F) to be the maximum number of edges an n-vertex r-uniform hypergraph H can have without containing F as a subgraph. Thus $r=2$ recovers the graph Turán number.

Hypergraphs

If F is an r-uniform hypergrpah, define ex (n, F) to be the maximum number of edges an n-vertex r-uniform hypergraph H can have without containing F as a subgraph. Thus $r=2$ recovers the graph Turán number.

Very little is known about ex (n, F) for hypergraphs.

Hypergraphs

If F is an r-uniform hypergrpah, define ex (n, F) to be the maximum number of edges an n-vertex r-uniform hypergraph H can have without containing F as a subgraph. Thus $r=2$ recovers the graph Turán number.

Very little is known about ex (n, F) for hypergraphs. We do not even know the asymptotic value of ex $\left(n, K_{4}^{(3)}\right)$, where $K_{4}^{(3)}$ is the complete 3 -uniform hypergraph on 4 vertices (which is the simplest non-trivial clique that is not a graph).

Hypergraphs

If F is an r-uniform hypergrpah, define ex (n, F) to be the maximum number of edges an n-vertex r-uniform hypergraph H can have without containing F as a subgraph. Thus $r=2$ recovers the graph Turán number.

Very little is known about ex (n, F) for hypergraphs. We do not even know the asymptotic value of ex $\left(n, K_{4}^{(3)}\right)$, where $K_{4}^{(3)}$ is the complete 3 -uniform hypergraph on 4 vertices (which is the simplest non-trivial clique that is not a graph).

In general, many problems which are easy for graphs become much harder for hypergraphs.

Hypergraphs

Let $M_{2}^{(r)}$ be two disjoint r-sets.

Hypergraphs

Let $M_{2}^{(r)}$ be two disjoint r-sets.

Observe that any hypergraph which is $M_{2}^{(r)}$-free is "intersecting", i.e. any two of its edges must have at least one vertex in common.

Hypergraphs

Let $M_{2}^{(r)}$ be two disjoint r-sets.

Observe that any hypergraph which is $M_{2}^{(r)}$-free is "intersecting", i.e. any two of its edges must have at least one vertex in common. In particular, if $S_{v}^{(r)}$ consists of every r-set containing some vertex v, then $S_{v}^{(r)}$ is $M_{2}^{(r)}$-free.

Hypergraphs

Let $M_{2}^{(r)}$ be two disjoint r-sets.

Observe that any hypergraph which is $M_{2}^{(r)}$-free is "intersecting", i.e. any two of its edges must have at least one vertex in common. In particular, if $S_{v}^{(r)}$ consists of every r-set containing some vertex v, then $S_{v}^{(r)}$ is $M_{2}^{(r)}$-free. For example, $S_{v}^{(2)}$ is just the star graph

Hypergraphs

Let $M_{2}^{(r)}$ be two disjoint r-sets.

Observe that any hypergraph which is $M_{2}^{(r)}$-free is "intersecting", i.e. any two of its edges must have at least one vertex in common. In particular, if $S_{v}^{(r)}$ consists of every r-set containing some vertex v, then $S_{v}^{(r)}$ is $M_{2}^{(r)}$-free. For example, $S_{v}^{(2)}$ is just the star graph

and in general the hypergraph $S_{V}^{(r)}$ is called a star.

Hypergraphs

Theorem (Erdős-Ko-Rado, 1961)

If $n \geq 2 r$ then

$$
\operatorname{ex}\left(n, M_{2}^{(r)}\right)=\binom{n-1}{r-1}
$$

and for $n>2 r$ the unique construction is the star.

Hypergraphs

Theorem (Erdős-Ko-Rado, 1961)

If $n \geq 2 r$ then

$$
\operatorname{ex}\left(n, M_{2}^{(r)}\right)=\binom{n-1}{r-1}
$$

and for $n>2 r$ the unique construction is the star.
A natural generalization of EKR is to ask for the extremal number of $M_{s}^{(r)}$, which is the disjoint union of s distinct r-sets.

Hypergraphs

Theorem (Erdős-Ko-Rado, 1961)

If $n \geq 2 r$ then

$$
\operatorname{ex}\left(n, M_{2}^{(r)}\right)=\binom{n-1}{r-1}
$$

and for $n>2 r$ the unique construction is the star.
A natural generalization of EKR is to ask for the extremal number of $M_{s}^{(r)}$, which is the disjoint union of s distinct r-sets.

Conjecture (Erdős Matching Conjecture, 1965)

If $n \geq s r-1$, then

$$
\operatorname{ex}\left(n, M_{s}^{(r)}\right)=\max \left\{\binom{n}{r}-\binom{n-s+1}{r},\binom{s r-1}{r}\right\} .
$$

Combinatorial Number Theory

We say that a set of k integers is a k-term arithmetic progression (or simple a k-AP) if they are of the form $\{a, a+d, a+2 d, \ldots, a+(k-1) d\}$.

Combinatorial Number Theory

We say that a set of k integers is a k-term arithmetic progression (or simple a k-AP) if they are of the form $\{a, a+d, a+2 d, \ldots, a+(k-1) d\}$.

Question

How many "integers in $\{1, \ldots, n\}$ " can "a set A not containing any $k-A P "$ have?

Combinatorial Number Theory

We say that a set of k integers is a k-term arithmetic progression (or simple a k-AP) if they are of the form $\{a, a+d, a+2 d, \ldots, a+(k-1) d\}$.

Question

How many "integers in $\{1, \ldots, n\}$ " can "a set A not containing any $k-A P "$ have?

Let us adopt the (non-standard) notation ex($n, k-\mathrm{AP}$) for the size of a largest k-AP free subset of $\{1, \ldots, n\}$.

Combinatorial Number Theory

Theorem (Behrend, 1946)

There exists a constant $c>0$ so that for $k \geq 3$,

$$
\operatorname{ex}(n, k-A P) \geq e^{-c \sqrt{\log n}} \cdot n .
$$

Combinatorial Number Theory

Theorem (Behrend, 1946)

There exists a constant $c>0$ so that for $k \geq 3$,

$$
\operatorname{ex}(n, k-A P) \geq e^{-c \sqrt{\log n}} \cdot n
$$

Theorem (Szemerédi, 1975)
For all k,

$$
\operatorname{ex}(n, k-A P)=o(n)
$$

Combinatorial Number Theory

Theorem (Behrend, 1946)

There exists a constant $c>0$ so that for $k \geq 3$,

$$
\operatorname{ex}(n, k-A P) \geq e^{-c \sqrt{\log n}} \cdot n
$$

Theorem (Szemerédi, 1975)
For all k,

$$
\operatorname{ex}(n, k-A P)=o(n)
$$

That is, every dense set of integers contains arbitrarily long arithmetic progressions.

Combinatorial Number Theory

The upper bound for ex($n, 3$-AP) was originally proven by Roth, and in this case stronger quantitative bounds are known.

Combinatorial Number Theory

The upper bound for ex($n, 3-\mathrm{AP}$) was originally proven by Roth, and in this case stronger quantitative bounds are known.

Theorem (Schoen, May 2020)

$$
e x(n, 3-A P) \ll \frac{(\log \log n)^{3}(\log \log \log n)^{5}}{\log n} \cdot n .
$$

Combinatorial Number Theory

The upper bound for ex($n, 3-\mathrm{AP}$) was originally proven by Roth, and in this case stronger quantitative bounds are known.

Theorem (Schoen, May 2020)

$$
\mathrm{ex}(n, 3-A P) \ll \frac{(\log \log n)^{3}(\log \log \log n)^{5}}{\log n} \cdot n
$$

This upper bound is roughly $e^{-\log \log n} \cdot n$, while the best lower bound is still $e^{-c \sqrt{\log n}} \cdot n$, and closing this a gap is a huge problem in the field.

Erdős Numbers

As you may have realized, Erdős has written a lot of papers (both in extremal combinatorics and in general).

Erdős Numbers

As you may have realized, Erdős has written a lot of papers (both in extremal combinatorics and in general).

This has led to the amusing statistic: Erdős has Erdős number 0. If you write a paper with someone who has Erdős number k, then your Erdős number is $k+1$.

Erdős Numbers

Almost every professional mathematician has a relatively small Erdős number (e.g. in the single digits).

Erdős Numbers

Almost every professional mathematician has a relatively small Erdős number (e.g. in the single digits).

MR Erdos Number $=4$ Claus Mazanti Sorensen
coauthored with
Hui Gao ${ }^{6}$

Erdős Numbers

Almost every professional mathematician has a relatively small Erdős number (e.g. in the single digits).

MR Erdos Number $=4$ Claus Mazanti Sorensen
coauthored with
Hui Gao ${ }^{6}$

It tends to be even smaller once you start picking extremal combinatorialists!

MR Erdos Number $=2$

Sam Spiro	coauthored with	Fan Chung	MR4057523
Fan Chung	coauthored with	Paul Erdős 1	MR0889356

Wrapping Things Up

We've discussed a lot of the major results and problems in extremal combinatorics.

Wrapping Things Up

We've discussed a lot of the major results and problems in extremal combinatorics. Let me briefly recall some of these results in a hip and easy to remember way.

Rapping Things Up

Rapping Things Up

Bear in mind for this R A P,

Rapping Things Up

Bear in mind for this R A P, I got a Behrend mind and no K A P.

Rapping Things Up

Bear in mind for this R A P, I got a Behrend mind and no K A P.

You won't be progressing when I'm the MC,

Rapping Things Up

Bear in mind for this R A P, I got a Behrend mind and no K A P.

You won't be progressing when I'm the MC, Got enough phat disses for a PhD.

Rapping Things Up

Bear in mind for this R A P, I got a Behrend mind and no K A P.

You won't be progressing when I'm the MC, Got enough phat disses for a PhD.

When we spar you'll be breathless, needing CPR,

Rapping Things Up

Bear in mind for this R A P, I got a Behrend mind and no K A P.

You won't be progressing when I'm the MC, Got enough phat disses for a PhD.

When we spar you'll be breathless, needing CPR, Seeing stars when I hit you with that EKR.

Rapping Things Up

Bear in mind for this R A P, I got a Behrend mind and no K A P.

You won't be progressing when I'm the MC, Got enough phat disses for a PhD.

When we spar you'll be breathless, needing CPR, Seeing stars when I hit you with that EKR.

Am I getting my point across, should I spell it out for you?

Rapping Things Up

Bear in mind for this R A P, I got a Behrend mind and no K A P.

You won't be progressing when I'm the MC, Got enough phat disses for a PhD.

When we spar you'll be breathless, needing CPR, Seeing stars when I hit you with that EKR.

Am I getting my point across, should I spell it out for you? AMGM, all your products are less than my average, μ.

Rapping Things Up

Was that too intense, were you only semi-ready?

Rapping Things Up

Was that too intense, were you only semi-ready?
You're acting so dense I could apply Szemeredi.

Rapping Things Up

Was that too intense, were you only semi-ready?
You're acting so dense I could apply Szemeredi.
I'm not the kind of person you should turn on,

Rapping Things Up

Was that too intense, were you only semi-ready?
You're acting so dense I could apply Szemeredi.

I'm not the kind of person you should turn on, Got edge to the max, like I'm Turan.

Rapping Things Up

Was that too intense, were you only semi-ready?
You're acting so dense I could apply Szemeredi.

I'm not the kind of person you should turn on, Got edge to the max, like I'm Turan.

I'm an extremal guy, Erdos-honed,

Rapping Things Up

Was that too intense, were you only semi-ready?
You're acting so dense I could apply Szemeredi.

I'm not the kind of person you should turn on, Got edge to the max, like I'm Turan.

I'm an extremal guy, Erdos-honed, My level's so high it's like I'm Erdős-Stoned.

Rapping Things Up

Was that too intense, were you only semi-ready?
You're acting so dense I could apply Szemeredi.

I'm not the kind of person you should turn on,
Got edge to the max, like I'm Turan.

I'm an extremal guy, Erdos-honed,
My level's so high it's like I'm Erdős-Stoned.
Getting 10 out of 10 's Fall, Winter, Spring and Summer,

Rapping Things Up

Was that too intense, were you only semi-ready?
You're acting so dense I could apply Szemeredi.

I'm not the kind of person you should turn on,
Got edge to the max, like I'm Turan.

I'm an extremal guy, Erdos-honed,
My level's so high it's like I'm Erdős-Stoned.
Getting 10 out of 10 's Fall, Winter, Spring and Summer, Your only 10 is your Erdős number.

Rapping Things Up

Now I'd rather be nice, stay home and count,

Rapping Things Up

Now I'd rather be nice, stay home and count, But if you want to fight, you're going down for the count.

Rapping Things Up

Now I'd rather be nice, stay home and count, But if you want to fight, you're going down for the count.

Bring your whole clique, I'll bring my acrobatics,

Rapping Things Up

Now I'd rather be nice, stay home and count, But if you want to fight, you're going down for the count.

Bring your whole clique, I'll bring my acrobatics, Color you black and blue until you're monochromatic.

Rapping Things Up

Now I'd rather be nice, stay home and count, But if you want to fight, you're going down for the count.

Bring your whole clique, I'll bring my acrobatics, Color you black and blue until you're monochromatic.

Keep coming and coming, there's no need for dramatics,

Rapping Things Up

Now I'd rather be nice, stay home and count, But if you want to fight, you're going down for the count.

Bring your whole clique, I'll bring my acrobatics, Color you black and blue until you're monochromatic.

Keep coming and coming, there's no need for dramatics, I'll keep cutting and cutting, chop you into dyadics.

Rapping Things Up

Now I'd rather be nice, stay home and count, But if you want to fight, you're going down for the count.

Bring your whole clique, I'll bring my acrobatics, Color you black and blue until you're monochromatic.

Keep coming and coming, there's no need for dramatics, I'll keep cutting and cutting, chop you into dyadics.

Don't think I'm care-free just cause I'm doing mathematics,

Rapping Things Up

Now I'd rather be nice, stay home and count, But if you want to fight, you're going down for the count.

Bring your whole clique, I'll bring my acrobatics, Color you black and blue until you're monochromatic.

Keep coming and coming, there's no need for dramatics, I'll keep cutting and cutting, chop you into dyadics.

Don't think I'm care-free just cause I'm doing mathematics, If you mess with me, things will get hyper graphic.

The End

(Drops Mic)

Answers to Questions

1 Yes, I did make the rap first and then designed the talk around explaining it.

Answers to Questions

1 Yes, I did make the rap first and then designed the talk around explaining it.
2 Yes, I am open to performing at weddings as well as bar/bat mitzvahs.

Answers to Questions

1 Yes, I did make the rap first and then designed the talk around explaining it.
2 Yes, I am open to performing at weddings as well as bar/bat mitzvahs.
3 My (tentative) rapper name is "Lil Oh."

