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What is Extremal Combinatorics?

Roughly speaking, problems in extremal combinatorics ask how
large a “parameter” of a “combinatorial object” can be.

For example, a central problem of Ramsey Theory is to determine
how large a clique KN one can have before every two-coloring of its
edges contains a monochromatic clique of size t. I.e., it seeks to
determine how many “vertices” a “two-colored cliques KN without
a monochromatic clique of size t” can have.
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What is Extremal Combinatorics?

Often it is too much to ask for an exact answer to our problem, so
we instead try and get effective bounds.

Because of this we use
lots of tools from analysis in order to obtain our bounds. These
include:

Cauchy-Schwarz:(∑
xiyi

)2
≤
∑

x2i ·
∑

y2i .

AMGM: (
n∏

i=1

xi

)1/n

≤ n−1
n∑

i=1

xi = E[xi ].

Splitting things into dyadic intervals (e.g. considering all
vertices of a graph with degree between 2k−1 and 2k).

· · ·
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Extremal Graph Theory

If F ,G are graphs, we say that G is F -free if it contains no copy of
F as a subgraph.

For example, if Ks,t is the complete bipartite
graph (with parts of size s and t) and K3 a triangle, then Ks,t is
K3-free.

•

•

•

•

••

•

• •

Question

How many “edges” can an “n-vertex F -free graph” have?

We denote this quantity by ex(n,F ), which is called the extremal
number or Turán number of F .
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Extremal Graph Theory

ex(n,F ) =maximum number of edges in an n-vertex F -free graph.

For example, ex(n,K3) ≥
⌊
n2/4

⌋
because G = Kbn/2c,dn/2e is an

n-vertex graph which is K3-free and with
⌊
n2/4

⌋
edges.

Theorem (Mantel, 1907)

ex(n,K3) =
⌊
n2/4

⌋
,

and the unique construction is Kbn/2c,dn/2e.
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Extremal Graph Theory

Let Kt denote the t-vertex clique, i.e. the graph where every two
edges are adjacent to each other.

Theorem (Turán, 1941)

ex(n,Kt) =

⌊(
1− 1

t − 1

)
n2

2

⌋
,

and the unique construction is a complete (t − 1)-partite graph
with parts of sizes bn/(t − 1)c , dn/(t − 1)e.
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Extremal Graph Theory

Turán’s Theorem can be generalized considerably.

Recall that
χ(G ) is the chromatic number of G , i.e. the fewest number of
colors needed to properly color the vertices of G (meaning that
every pair of adjacent vertices receives a distinct color).
For example, the following shows that the Petersen graph G has
χ(G ) ≤ 3, and it is not hard to show that it is in fact equal to 3.

Picture form Wikipedia.
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Extremal Graph Theory

Theorem (Erdős-Stone, 1946)

For any graph F ,

ex(n,F ) =

(
1− 1

χ(F )− 1

)
n2

2
+ o(n2).

For example, this tells us that the extremal number of the Petersen
graph is roughly 1

2

(n
2

)
. The lower bound for Erdős-Stone is easy:

just take a complete (χ(F )− 1)-partite graph. The upper bound is
significantly harder.

Note that when χ(F ) = 2, this only gives

ex(n,F ) = o(n2).
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just take a complete (χ(F )− 1)-partite graph. The upper bound is
significantly harder.

Note that when χ(F ) = 2, this only gives

ex(n,F ) = o(n2).



Extremal Graph Theory
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Extremal Graph Theory

In general determining ex(n,F ) when F is bipartite (i.e. χ(F ) = 2)
is very, very difficult, even for simple families of graphs.

Theorem

If F is a tree on k vertices, then

ex(n,F ) ≤ (k − 1)n.

Conjecture (Erdős-Sós, 1962)

If F is a tree on k vertices, then

ex(n,F ) ≤ 1

2
(k − 1)n.
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Extremal Graph Theory

Theorem (Kovari-Sós-Turán, 1954)

If s ≤ t, then
ex(n,Ks,t)� n2−1/s .

Conjecture

If s ≤ t, then
ex(n,Ks,t) ≈ n2−1/s .

This is known to hold whenever t > (s − 1)! due to the existence
of projective norm graphs.
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Extremal Graph Theory

Theorem (Erdős; Bondy-Simonovits, 1974)

ex(n,C2k)� n1+1/k .

Conjecture

ex(n,C2k) ≈ n1+1/k .

This is known to hold when k = 2, 3, 5 (but not 4!) due to the
existence of generalized polygons.

In general, it is often the case that a conjectured upper bound is
relatively easy to obtain, but seemingly the lower bound requires
tools from algebra, geometry, number theory, etc.



Extremal Graph Theory
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Hypergraphs

There are many ways to generalize graphs (directed graphs,
multigraphs), and each of these have their own sort of extremal
problems one can ask.

An important generalization is hypergraphs.
A hypergraph H is a pair (V ,E ) where V is the vertex set and E is
a collection of e ⊆ V called edges.

When each e ∈ E has r vertices we say that H is an r -uniform
hypergraph.
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Hypergraphs

If F is an r -uniform hypergrpah, define ex(n,F ) to be the
maximum number of edges an n-vertex r -uniform hypergraph H
can have without containing F as a subgraph.

Thus r = 2 recovers
the graph Turán number.

Very little is known about ex(n,F ) for hypergraphs. We do not

even know the asymptotic value of ex(n,K
(3)
4 ), where K

(3)
4 is the

complete 3-uniform hypergraph on 4 vertices (which is the simplest
non-trivial clique that is not a graph).

In general, many problems which are easy for graphs become much
harder for hypergraphs.
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Hypergraphs

Let M
(r)
2 be two disjoint r -sets.

• ••
• ••

Observe that any hypergraph which is M
(r)
2 -free is “intersecting”,

i.e. any two of its edges must have at least one vertex in common.

In particular, if S
(r)
v consists of every r -set containing some vertex

v , then S
(r)
v is M

(r)
2 -free. For example, S

(2)
v is just the star graph

•
• • •••

and in general the hypergraph S
(r)
v is called a star.
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Hypergraphs

Theorem (Erdős-Ko-Rado, 1961)

If n ≥ 2r then

ex(n,M
(r)
2 ) =

(
n − 1

r − 1

)
,

and for n > 2r the unique construction is the star.

A natural generalization of EKR is to ask for the extremal number

of M
(r)
s , which is the disjoint union of s distinct r -sets.

Conjecture (Erdős Matching Conjecture, 1965)

If n ≥ sr − 1, then

ex(n,M
(r)
s ) = max

{(
n

r

)
−
(
n − s + 1

r

)
,

(
sr − 1

r

)}
.



Hypergraphs
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Combinatorial Number Theory

We say that a set of k integers is a k-term arithmetic progression
(or simple a k-AP) if they are of the form
{a, a + d , a + 2d , . . . , a + (k − 1)d}.

Question

How many “integers in {1, . . . , n}” can “a set A not containing
any k-AP” have?

Let us adopt the (non-standard) notation ex(n, k-AP) for the size
of a largest k-AP free subset of {1, . . . , n}.
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Combinatorial Number Theory

Theorem (Behrend, 1946)

There exists a constant c > 0 so that for k ≥ 3,

ex(n, k-AP) ≥ e−c
√
log n · n.

Theorem (Szemerédi, 1975)

For all k,
ex(n, k-AP) = o(n).

That is, every dense set of integers contains arbitrarily long
arithmetic progressions.
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For all k,
ex(n, k-AP) = o(n).

That is, every dense set of integers contains arbitrarily long
arithmetic progressions.



Combinatorial Number Theory

Theorem (Behrend, 1946)

There exists a constant c > 0 so that for k ≥ 3,

ex(n, k-AP) ≥ e−c
√
log n · n.

Theorem (Szemerédi, 1975)
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Combinatorial Number Theory

The upper bound for ex(n, 3-AP) was originally proven by Roth,
and in this case stronger quantitative bounds are known.

Theorem (Schoen, May 2020)

ex(n, 3-AP)� (log log n)3(log log log n)5

log n
· n.

This upper bound is roughly e− log log n · n, while the best lower
bound is still e−c

√
log n · n, and closing this a gap is a huge problem

in the field.
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Erdős Numbers

As you may have realized, Erdős has written a lot of papers (both
in extremal combinatorics and in general).

This has led to the amusing statistic: Erdős has Erdős number 0.
If you write a paper with someone who has Erdős number k , then
your Erdős number is k + 1.
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Erdős Numbers

Almost every professional mathematician has a relatively small
Erdős number (e.g. in the single digits).

It tends to be even smaller once you start picking extremal
combinatorialists!
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Let me briefly recall some of these results
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Rapping Things Up

Bear in mind for this R A P,
I got a Behrend mind and no K A P.

You won’t be progressing when I’m the MC,
Got enough phat disses for a PhD.

When we spar you’ll be breathless, needing CPR,
Seeing stars when I hit you with that EKR.

Am I getting my point across, should I spell it out for you?
AMGM, all your products are less than my average, µ.
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Rapping Things Up

Was that too intense, were you only semi-ready?

You’re acting so dense I could apply Szemeredi.

I’m not the kind of person you should turn on,
Got edge to the max, like I’m Turan.

I’m an extremal guy, Erdos-honed,
My level’s so high it’s like I’m Erdős-Stoned.

Getting 10 out of 10’s Fall, Winter, Spring and Summer,
Your only 10 is your Erdős number.
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But if you want to fight, you’re going down for the count.

Bring your whole clique, I’ll bring my acrobatics,
Color you black and blue until you’re monochromatic.

Keep coming and coming, there’s no need for dramatics,
I’ll keep cutting and cutting, chop you into dyadics.

Don’t think I’m care-free just cause I’m doing mathematics,
If you mess with me, things will get hyper graphic.
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(Drops Mic)
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1 Yes, I did make the rap first and then designed the talk
around explaining it.

2 Yes, I am open to performing at weddings as well as bar/bat
mitzvahs.

3 My (tentative) rapper name is “Lil Oh.”
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